Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 13(1): 20969, 2023 11 28.
Article En | MEDLINE | ID: mdl-38017264

Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Apolipoprotein L1/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Protein Isoforms , Biomarkers , Chemokines , Prognosis
2.
Sci Rep ; 13(1): 16859, 2023 10 06.
Article En | MEDLINE | ID: mdl-37803063

Worldwide, cancer is a huge burden, and each year sees an increase in its incidence. RAB (Ras-related in brain) 13 is crucial for a number of tumor types. But more research on RAB13's tumor-related mechanism is still required. This study's goal was to investigate RAB13's function in human pan-cancer, and we have also preliminarily explored the relevant mechanisms. To investigate the differential expression, survival prognosis, immunological checkpoints, and pathological stage of RAB13 in human pan-cancer, respectively, databases of TIMER2.0, GEPIA 2, and UALCAN were employed. CBioPortal database was used to analyze the mutation level, meanwhile, PPI network was constructed based on STRING website. The putative functions of RAB13 in immunological infiltration were investigated using single sample gene set enrichment analysis (ssGSEA). The mechanism of RAB13 in hepatocellular cancer was also briefly investigated by us using gene set enrichment analysis (GSEA). RAB13 was differentially expressed in a number of different cancers, including liver hepatocellular carcinoma (LIHC), stomach adenocarcinoma (STAD), etc. Additionally, RAB13 overexpression in LGG and LIHC is associated with a worse prognosis, including overall survival (OS) and disease-free survival (DFS). Then, we observed that early in BLCA, BRAC, CHOL, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, and STAD, the level of RAB13 expression was raised. Next, we found that "amplification" was the most common mutation in RAB13. The expression of SLC39A1, JTB, SSR2, SNAPIN, and RHOC was strongly positively linked with RAB13, according to a correlation study. RAB13 favorably regulated B cell, CD8 + T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cell in LIHC, according to immune infiltration analysis. Immune checkpoint study revealed a positive correlation between RAB13 expression and PD1, PDL1, and CTLA4 in LIHC. According to GSEA, RAB13 is involved in a number of processes in LIHC, including MTORC1 signaling, MYC targets v1, G2M checkpoint, MITOTIC spindle, DNA repair, P53 pathway, glycolysis, PI3K-AKT-MTOR signaling, etc. RAB13 is a possible therapeutic target in LIHC and can be used as a prognostic marker.


Adenocarcinoma , Carcinoma, Hepatocellular , Liver Neoplasms , Stomach Neoplasms , Humans , Phosphatidylinositol 3-Kinases , Carcinoma, Hepatocellular/genetics , rab GTP-Binding Proteins/genetics
3.
Front Immunol ; 14: 1269451, 2023.
Article En | MEDLINE | ID: mdl-37868994

Regulation of cell mortality for disease treatment has been the focus of research. Ferroptosis is an iron-dependent regulated cell death whose mechanism has been extensively studied since its discovery. A large number of studies have shown that regulation of ferroptosis brings new strategies for the treatment of various benign and malignant diseases. Iron excess and lipid peroxidation are its primary metabolic features. Therefore, genes involved in iron metabolism and lipid metabolism can regulate iron overload and lipid peroxidation through direct or indirect pathways, thereby regulating ferroptosis. In addition, glutathione (GSH) is the body's primary non-enzymatic antioxidants and plays a pivotal role in the struggle against lipid peroxidation. GSH functions as an auxiliary substance for glutathione peroxidase 4 (GPX4) to convert toxic lipid peroxides to their corresponding alcohols. Here, we reviewed the researches on the mechanism of ferroptosis in recent years, and comprehensively analyzed the mechanism and regulatory process of ferroptosis from iron metabolism and lipid metabolism, and then described in detail the metabolism of GPX4 and the main non-enzymatic antioxidant GSH in vivo.


Ferroptosis , Iron Overload , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Iron/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Antioxidants/metabolism , Glutathione/metabolism
...